Best L_{p}-Approximations to Continuous and Quasi-Continuous Functions by Non-Decreasing Functions on the Unit Square

SALEM M.A. SAHAB
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

Abstract

The author introduces the definition of quasi-continuity on the unit square $[0,1] \times[0,1]$. Let Q be the Banach space, under the sup-norm, of quasi-continuous functions on the unit square. Let M denote the closed convex cone in Q comprised of non-decreasing functions on the unit square. Let C be the space of continuous functions on the unit square. For $f \in Q$ and $\mathrm{l}<\mathrm{p}<\infty$, let f_{p} denote the best L_{p}-approximation to f by elements of M . He shows that f_{p} converges uniformly as p tends to infinity to a best L_{∞}-approximation by elements of M. Moreover if $f \in C$, then each $f_{p} \in C$ and so is f_{∞}.

1. Introduction

We start with some introductory remarks and notations in the plane R^{2}. The generalization from R^{2} to R^{n} where $n>2$ is easy. We choose R^{2} since it is much easier to visualize and understand the ideas and concepts introduced here.

Let Ω be the unit square in R^{2}. Let μ denote the 2-dimensional Lebesgue measure on Ω. Let σ consist of the μ-measurable subsets of Ω, and for $l<p \leqslant \infty$, let $L_{p}=L_{p}$ (Ω, σ, μ). If $\bar{x}=\left(x_{1}, x_{2}\right)$ and $\bar{y}=\left(y_{1}, y_{2}\right)$ are elements of Ω, we write $\bar{x} \leq \bar{y}$ only if $x_{1} \stackrel{p}{\leq}$ y_{1} and $x_{2} \leq y_{2}$. By a function, unless we specify otherwise, we mean a real-valued function defined on $\boldsymbol{\Omega}$.

A function $g: \Omega \rightarrow R$ is said to be non-decreasing in each variable separately if \bar{x}, $\bar{y} \in \Omega$ and $\bar{x}=\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)=\bar{y}$ imply that $g\left(x_{1}, x_{2}\right) \leq g\left(y_{1}, y_{2}\right)$. Such a function is said to be non-decreasing on Ω if the following condition is also satisfied: If \bar{x} is in the
boundary of Ω, then

$$
\begin{array}{ccc}
\operatorname{ginf}(\bar{x})= & g(\bar{y}) \quad \bar{y} \leq \bar{x}\} & \bar{x}=\left(0, x_{2}\right) \text { or } \bar{x}=\left(x_{1}, 0\right) \\
& \sup \{g(\bar{y}): \bar{y} \leq \bar{x}\} & \text { otherwise. } \tag{1.1}
\end{array}
$$

Let M consist of all non-decreasing functions on Ω. Then M is closed and convex ${ }^{[1, p .425]}$.

Next, we introduce the definition of the discontinuity of the first kind and the definition of quasi-continuity on Ω. This definition generalizes the definition of quasicontinuity on [0,1] as described in Darst and Sahab ${ }^{[2]}$.

Definition. Let $\left(x_{1}, y_{1}\right) \in \Omega$. A function f is said to have a discontinuity of the first kind at (x_{1}, y_{1}) if given $\epsilon>0$, there exists $\delta>0$ and $L_{1}, L_{2} \in R$ such that for all $(x, y) \in$ Ω with $\left(x_{1}, y_{1}\right) \leq(x, y)$ and $d_{p}\left(\left(x_{1}, y_{1}\right),(x, y)\right)<\delta$ we have $\left|f(x, y)-L_{1}\right|<\epsilon$. Also for $\left(x_{1}, y_{1}\right) \geq(x, y)$ and $d_{p}\left(\left(x_{1}, y_{1}\right),(x, y)\right)<\delta$ we have $\left|f(x, y)-L_{2}\right|<\epsilon$.

We denote this by writing

$$
\lim _{(x, y) \uparrow\left(x_{1}, y_{1}\right)} f(x, y)=L_{1}
$$

and,

$$
\begin{equation*}
\lim _{(x, y) \downarrow\left(x_{1}, y_{1}\right)} f(x, y)=L_{2}, \tag{1.3}
\end{equation*}
$$

We call L_{1}, the lower-hand limit of f at $\left(x_{1}, y_{1}\right)$, and L_{2} the upper-hand limit of f at ($\mathrm{x}_{1}, \mathrm{y}_{1}$).

Fig. 1.1

Definition. A function f is said to be quasi-continuous on Ω if for all points (x_{1}, y_{1}) $\epsilon \operatorname{Int} \Omega$, both the lower and upper hands limits exist. For $\left(0, y_{1}\right),\left(x_{1}, 0\right) \in \partial \Omega, x_{1} \neq 1 \neq$ y_{1} the upper-hand limit must exist, and for $\left(1, y_{1}\right),\left(x_{1}, 1\right) \in \partial \Omega, x_{1} \neq 0 \neq$ the lowerhand limit must also exist.

This definition is consistent with the definition of a monotone non-decreasing function as we show in the next lemma.

Lemma. If $f \in M$, then $f \in \mathbb{Q}$.
Proof. Let $\left(x_{1}, y_{1}\right) \in \operatorname{Int} \Omega$. Then for $(x, y) \leq\left(x_{1}, y_{1}\right)$ we have

$$
L_{1}=\lim _{(x, y) \uparrow\left(x_{1}, y_{1}\right)} f(x, y)=\sup \left\{f(x, y):(x, y) \leq\left(x_{1}, y_{1}\right)\right\}
$$

and,

$$
\left.\mathcal{-}_{2}=\lim _{(x, y) \downarrow\left(x_{1}, y_{1}\right.} f(x, y)=\inf f(x, y):(x, y) \geq\left(x_{1}, y_{1}\right)\right\}
$$

Similarly, we consider points on the boundary of Ω as mentioned earlier in the definition of non-decreasing functions.

As done by Darst and Sahab ${ }^{[2]}$ we consider every f in Q as bounded Lebesgue measurable function, we we let

$$
\begin{equation*}
[f]=\{g: g \text { is measurable }, f=g \text { a.e. }\} \tag{1.4}
\end{equation*}
$$

be the corresponding elements of L_{∞}.
A function $f \in Q$ is zero $<=>$ for every $\left(x_{1}, y_{1}\right) \in \operatorname{Int} \Omega$,

$$
\lim _{(x, y)}\left\{_{\left(x_{1}, y_{1}\right)} f(x, y)=\lim _{(x, y) \downarrow\left(x_{1}, y_{1}\right)} f(x, y)=0\right.
$$

Next, let Q^{*} denote the space of functions $f \in Q$ such that

$$
f\left(0, y_{1}\right)=\lim _{(0, y) \uparrow\left(0, y_{1}\right)} f(0, y)
$$

and

$$
f\left(x_{1}, 0\right)=\lim _{(x, 0) \downarrow\left(x_{1} 0\right)} f(x, 0)
$$

where $0 \leq \mathrm{x}_{1}, \mathrm{y}_{1}<1, \quad$ and

$$
f\left(x_{1}, y_{1}\right)=\lim _{(x, y) \uparrow\left(x_{1}, y_{1}\right)} f(x, y)
$$

For all $(x, y) \in \operatorname{Int} \Omega \cup\left\{\left(1, y_{1}\right),\left(x_{1}, 1\right): 0<x_{1}, y_{1} \leq 1\right\}$.
Clearly we have a linear isometry between Q^{*} and the embedding of Q in $L_{\infty}(\Omega)$.
Now, let P denote the set of square partitions π partitioning Ω into n squares of equal areas as shown in Fig. 1.2.

Fig. 1.2
Let I_{B} denote the indicator function of a square $B \leq \Omega$, i.e., $I_{B}(x, y)=1$ if $(x, y) \in B$ and $I_{B}(x, y)=0$ otherwise.

Denote by S^{*} the dense linear subspace of Q comprised of all steps functions of

$$
=\sum_{i=1}^{n} a_{i} I_{B_{i}}, a_{i} \in R, \Omega=\bigcup_{i=1}^{n} B_{i} \text { with } B_{i} \cap B_{j}=\emptyset, i \neq, j .
$$

It was shown by Darst and Sahab ${ }^{[2]}$ that for $n[0,1], f_{p}$ converges uniformly as $p \rightarrow$ ∞ to a best L_{∞} - approximation to f by monotone non-decreasing functions on $[0,1]$.

From now on, we consider Q^{*}, and we look at best L_{p}-approximations to elements of Q^{*} by elements of $\mathrm{M}^{*}=\mathrm{M} \cap \mathrm{Q}^{*}$.

2. Basic Generalizations

In this section we obtain some results for approximations on Ω. These results are established by modifying the proofs of the corresponding results in Drast and Sahab ${ }^{[2]}$ for functions on $[0,1]$.

It is very important at this stage to be familiar with the concepts, results and proofs in Drast and Sahab ${ }^{[2]}$, in order to understand the briefings mentioned in what follows of this section.

Let $\pi=\bigcup_{i=1}^{n} B_{i}$ with $B_{i} \cap B_{i}=\emptyset$ be a partition of Ω into a set of disjoint subsquares of equal area.

Let $X=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$ be a finite partially ordered set in the plane. The literature in Darst and Sahab ${ }^{[2, p p .10-11]}$ which is extracted from Ubhaya ${ }^{[6]}$ carries over in the
same manner.
Lemma 1. If $f \in S_{\pi}^{*}$, then $f_{p} \in S_{\pi}^{*}$ for all $p, 1<p<\infty$, where $S_{\pi}^{*}=S_{\pi} \cap Q^{*}$
Proof. Suppose f_{p} is not constant a.e. on some subsquare B_{j}. Then let

$$
\ell=\operatorname{essinf}\left\{f_{p}(\bar{t}): \bar{t} \in B_{j}\right\},
$$

and

$$
\mathbf{u}=\operatorname{essup}\left\{\mathbf{f}_{\mathbf{p}}(\overline{\mathrm{t}}): \overline{\mathrm{t}} \in \mathbf{B}_{\mathbf{j}}\right\}
$$

Clearly $\ell<\mathbf{u}$. Choose $\zeta \in[\ell, u]$ such that

$$
\left|\mathrm{f}_{\mathrm{i}}-\zeta\right|=\inf \left\{\left|\mathrm{f}_{\mathrm{j}}-\mathrm{r}\right|: \mathrm{r} \in[\ell, \mathbf{u}]\right\}
$$

Then the monotone non-decreasing function defined by

$$
\begin{aligned}
\mathbf{f}_{\mathbf{p}}^{*}(\overline{\mathrm{t}}) & =\zeta, & & \overline{\mathbf{t}} \in \mathbf{B}_{\mathbf{j}} \\
& =\mathbf{f}_{\mathrm{p}}(\overline{\mathbf{t}}) & & \text { otherwise }
\end{aligned}
$$

is a better best L_{p} - approximation to f since

$$
\begin{aligned}
\left\|f-f_{p}^{*}\right\|= & \sum_{i=1}^{n} \int_{B_{i}}\left|f_{i}-f_{p}(\bar{t})\right|^{p} d \bar{t}+\left.\int_{B_{j}}\left|f_{j}-\zeta\right|^{p} d \bar{t}\right|^{\frac{1}{p}} \\
& <\left|\sum_{\substack{i=1 \\
i \neq j}}^{n} \int_{B_{i}}\right| f_{i}-\left.f_{p}(\bar{t})\right|^{p} d \bar{t}+\int_{B_{j}}\left|f_{j}-f_{p}(\bar{t})\right|^{p} d \bar{t} \left\lvert\, \frac{1}{\mathbf{p}}\right.
\end{aligned}
$$

or,

$$
\left\|\mathbf{f}-\mathbf{f}_{\mathrm{p}}^{*}\right\|_{\mathrm{p}}<\left\|\mathbf{f}-\mathrm{f}_{\mathrm{p}}\right\|_{\mathrm{p}} .
$$

Contradiction! Hence f_{p} must be constant everywhere on B_{j} and $f_{p} \in S_{\pi}^{*}$
Theorem 1. Let $f \in S^{*}$ be given by $f=\sum_{i=1}^{n} f_{i} I_{B_{i}}$
For every $p, 1<p<\infty$, let $w_{p}=\left\{w_{p, i}\right\}_{i=1}^{n}$ be defined by

$$
\begin{equation*}
w_{p, i}=A\left(B_{i}\right)=\text { Area of } B_{i} \tag{2.3}
\end{equation*}
$$

for all i. Let $g_{p}=\left\{g_{p, i}\right\}_{i=1}^{n}$ be as defined by Darst and Sahab ${ }^{[2]}$ and Shilov and Gurevich ${ }^{[4]}$.

$$
\begin{aligned}
g_{p, i}= & \max _{\{U: i \epsilon U\}} \min _{\{L: i L L\}} u_{p}(L \cap U) \\
& \min _{\{L: i \epsilon L\}} \max _{\{U: i \epsilon U\}} u_{p}(L \cap U)
\end{aligned}
$$

Then f_{p} is given by

$$
\mathrm{f}_{\mathrm{p}}=\sum_{\mathrm{i}=1} \mathrm{~g}_{\mathrm{p}, \mathrm{i}} \mathrm{I}_{\mathrm{B}_{\mathrm{i}}}
$$

Proof. By the last lemma, we have $f_{p} \in S_{\pi}^{*}$. For every i, let

$$
\overline{\mathrm{t}}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\text { Center of } \mathrm{B}_{\mathrm{i}},
$$

and let $X=\left\{\bar{t}_{1}, \bar{t}_{2}, \ldots, \bar{t}_{n}\right\}$. Then X is partially ordered. Consider $\left\{f_{i}\right\}_{i=1}^{n}$ as a finite real valued function defined on X, and let $h=\left\{h_{i}\right\}_{i=1}^{n}$ be a monotone non-decreasing fünction on X. The rest of the proof follows from Theorem 2 of Darst and Sahab ${ }^{[2]}$, through simple modifications as was done in Lemma 1.

Theorem 2. Let $f \in S_{\pi}^{*}$ and let f_{p} be as given in Theorem 1. Then f_{p} converges as $p \rightarrow \infty$ to the monotone non-decreasing function $f_{\infty} \in S_{\pi}^{*}$ given by

$$
\begin{equation*}
f_{\infty}=\sum_{i=1}^{n} g_{\infty, i} I_{B_{i}} \tag{2.6}
\end{equation*}
$$

where $g_{\infty, i}=\lim _{p \rightarrow 1} g_{p, i}=\max _{\{U: i \in U\}} \min _{\{\mathrm{L}: \mathrm{i} \mathrm{L} \mathrm{L}\}} \mu_{\infty}(\mathrm{L} \cap \mathrm{U})$.
Proof. Follow the proof of Theorem 3 in Darst and Sahab ${ }^{[2]}$ with the right modification.

Next, we state some remarks, definitions and results which are generalizations of their counterparts discussed in Darst and Sahab ${ }^{[2]}$.
Remark 1. If $\mathrm{f} \in \mathrm{S}_{\boldsymbol{\pi}}^{\boldsymbol{*}}$. We denote it by $\mathrm{f}_{\boldsymbol{\pi}}$. Similarly, we let

$$
\mathbf{f}_{\pi, p}=\left(\mathbf{f}_{\pi}\right)_{p}
$$

and,

$$
f_{\pi, \infty}=\left(f_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} f_{\pi, p}
$$

Remark 2. (a) Let f and g be elements of Q^{*} such that $f \leq g$. Then

$$
f_{p} \leq g_{p}
$$

for all $\mathrm{p}, 1<\mathrm{p}<\infty$.
(b) For every constant c

$$
(f+c)_{p}=f_{p}+c
$$

Definition. Let $f \in Q^{*}$ and let $\pi=\left\{B_{i}\right\}_{i=1}^{n}$ be a partition of Ω. The oscillation of f over B_{i} is defined by

$$
\begin{equation*}
\widetilde{\boldsymbol{\sigma}}\left[\mathbf{f}, \mathbf{B}_{\mathrm{i}}\right]=\sup \left\{\mathrm{f}(\overline{\mathbf{x}})-\mathrm{f}(\overline{\mathbf{y}}): \overline{\mathbf{x}}, \overline{\mathbf{y}} \in \mathrm{B}_{\mathrm{i}}\right. \tag{2.7}
\end{equation*}
$$

and the oscillation of f over π is defined by

$$
\begin{equation*}
\widetilde{\sigma}(f, \pi)=\max _{1 \leq i \leq n}\left\{\widetilde{\sigma}\left[f, B_{i}\right]\right\} \tag{2.8}
\end{equation*}
$$

Lemma 2. Let $\pi^{\prime}=\left\{B_{i}^{\prime}\right\}_{i=1}^{n^{\prime}}$ be a refinement of $\pi=\left\{B_{i}\right\}_{i=1}^{n} ; n<n^{\prime}$ (written $\left.\pi<\pi^{\prime}\right)$. Then $\widetilde{\boldsymbol{\sigma}}\left(\mathbf{f}, \pi^{\prime}\right) \leq \widetilde{\boldsymbol{\sigma}}(\mathrm{f}, \pi)$.

Remark 3. Let $\mathrm{f} \in \mathrm{Q}^{*}$ and let $\epsilon>0$ be given. Then there exists a partition π such that $\widetilde{\sigma}(f, \pi)<\epsilon$,

Moreover, if $0<\epsilon^{\prime}<\epsilon$, then there is a refinement π^{\prime} of π such that $\widetilde{\sigma}\left(\mathbf{f}, \pi^{\prime}\right)<\epsilon^{\prime}$. Hence $\tilde{\boldsymbol{\sigma}}(\mathbf{f}, \pi)$ can be made as small as possible by refining π. We denote this by writing

$$
\begin{equation*}
\lim _{\pi} \widetilde{\sigma}(f, \pi)=0 \tag{2.9}
\end{equation*}
$$

Definition. Let $f \in Q^{*}$ and $\pi=\left\{B_{i}\right\}_{i=1}^{\boldsymbol{n}}$ be a partition of Ω. For every $i, 1 \leq i \leq n$, let

$$
\begin{equation*}
t_{i}=\inf _{(\bar{x}, \bar{y}) \in B_{i}} f(x, \bar{y}) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\mathrm{i}}=\sup _{(\overline{\mathrm{x}}, \bar{y}) \in \mathrm{B}_{\mathrm{i}}} \mathbf{f}(\overline{\mathrm{x}}, \overline{\mathrm{y}}) \tag{2.11}
\end{equation*}
$$

Then the two expressions

$$
\underline{f}_{\pi}=\sum_{i=1}^{n} \quad t_{i} I_{B_{i}}
$$

and,

$$
\overline{\mathbf{f}}_{n}=\sum_{\mathrm{i}=1}^{\mathbf{n}} \tau_{\mathrm{i}} \mathrm{I}_{\mathrm{B}_{\mathrm{i}}}
$$

are called the lower and upper step functions generated by π, respectively.
Definition. For \underline{f}_{π} and \bar{f}_{π} defined above, let

$$
\begin{align*}
& \overline{\mathbf{f}}_{\pi, \mathrm{p}}=\left(\overline{\mathrm{f}}_{\pi}\right)_{\mathrm{p}} \\
& \underline{\mathbf{f}}_{\pi, \mathrm{p}}=\left(\underline{f}_{\pi}\right)_{\mathrm{p}} \tag{2.15}
\end{align*}
$$

and,

$$
\begin{align*}
& \bar{f}_{\pi, \infty}=\left(\bar{f}_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} \bar{f}_{\pi, p} \tag{2.16}\\
& \underline{f}_{\pi, \infty}=\left(\underline{f}_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} \underline{f}_{\pi, p} \tag{2.17}
\end{align*}
$$

The proofs of the following two lemmas can be generalized easily from the proofs of Lemma 3 and Lemma 4 in Darst and Sahab ${ }^{[2]}$, respectively.

Lemma 3. For all $\mathrm{p}, 1<\mathrm{p}<\infty$, we have

$$
0 \leq \overline{\mathbf{f}}_{\pi, p}-\underline{\mathbf{f}}_{\pi, \mathrm{p}} \leq \tilde{\boldsymbol{\sigma}}(\mathbf{f}, \pi)
$$

and,

$$
0 \leq \overline{\mathbf{f}}_{\pi, \infty}-\underline{f}_{\pi, \infty} \leq \widetilde{\boldsymbol{\sigma}}(\mathbf{f}, \pi)
$$

Lemma 4. Let $\mathrm{f} \in \mathrm{Q}^{*}$ and let $\pi<\pi^{\prime}$. Then

$$
\begin{aligned}
& \underline{f}_{\pi, p} \leq \underline{f}_{\pi^{\prime}, p} \leq \overline{\mathbf{f}}_{\pi^{\prime}, p} \leq \overline{\mathbf{f}}_{\pi, \mathrm{p}} \leq \mathbf{f}_{\pi, \mathrm{p}}+\tilde{\boldsymbol{\sigma}}(\mathbf{f}, \pi), \\
& \underline{\mathbf{f}}_{\pi, \infty} \leq \underline{\mathbf{f}}_{\pi^{\prime}, \infty} \leq \overline{\mathrm{f}}_{\pi^{\prime}, \infty} \leq \overline{\mathrm{f}}_{\pi, \infty} \leq \underline{\mathbf{f}}_{\pi, \infty}+\widetilde{\boldsymbol{\sigma}}(\mathbf{f}, \pi) .
\end{aligned}
$$

Finally, in this section, we state the following Theorem.
Theorem 3. Let $f \in Q^{*}$ with best monotone L_{p}-approximation f_{p}. Then

$$
\begin{aligned}
& \lim _{\pi} \overline{\mathbf{f}}_{\pi, p}=\lim _{\pi} \mathbf{f}_{\pi, p}=\mathbf{f}_{\mathbf{p}}, \\
& \lim _{\pi} \bar{f}_{\pi, \infty}=\lim _{\pi} \mathbf{f}_{\pi, \infty}=\mathbf{f}_{\infty}=\lim _{p \rightarrow \infty} f_{p}
\end{aligned}
$$

Proof. See the proofs of Theorems 4 and 5 in [2, pp.18-19].

3. The Case When fis Continuous

We choose to write the full proof of the following theorem because of the nature of the work involved here.

Theorem 4. Let f be continuous on Ω, then f_{p} is continuous, $1<\mathrm{p}<\infty$.
Proof. Let (x, y) be an interior point of Ω and let it be fixed. Let $\epsilon>0$ be given. Then

$$
\begin{align*}
\mid f_{p}(x, y) & -f_{p}\left(x^{\prime}, y^{\prime}\right)|\leq| f_{p}(x, y)-\bar{f}_{\pi, p}(x, y \mid \\
& +\left|\bar{f}_{\pi, p}(x, y)-\bar{f}_{\pi, p}\left(x^{\prime}, y^{\prime}\right)\right|+\left|\bar{f}_{\pi, p}\left(x^{\prime}, y^{\prime}\right)-f_{p}\left(x^{\prime}, y^{\prime}\right)\right| \tag{3.1}
\end{align*}
$$

Since Theorem 3.1 implies that

$$
\mathrm{f}_{\mathrm{p}}(\mathrm{x}, \mathrm{y})=\lim _{\pi} \mathrm{f}_{\pi, \mathrm{p}}(\mathrm{x}, \mathrm{y})
$$

for all $(x, y) \in \Omega$, we can choose a partition $\pi=\left\{B_{i}\right\}_{i=1}^{n}$ with the following
(1) Each of the first and third term on the right hand side of (3.1) is less than $\epsilon / 3$.
(2) Suppose \bar{f}_{π} is given by

$$
\begin{equation*}
\bar{f}_{\pi}=\sum_{i=1}^{n} \tau_{i} I_{B_{i}} \tag{3.2}
\end{equation*}
$$

Then by the uniform continuity of f over Ω we can have

$$
\begin{equation*}
\left|\tau_{i}-\tau_{j-1}\right|<\epsilon / 9 \tag{3.3}
\end{equation*}
$$

for all $i=2,3, \ldots, n$

Thus, (3.1) becomes

$$
\begin{equation*}
\left|f_{p}(x, y)-f_{p}\left(x^{\prime}, y^{\prime}\right)\right|<\epsilon / 3+\left|\bar{f}_{\pi, p}(x, y)-\bar{f}_{\pi, p}\left(x^{\prime}, y^{\prime}\right)\right|+\epsilon / 3 \tag{3.4}
\end{equation*}
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in \Omega$. We need to show that there exists a real number $\delta>0$ such that

$$
\left|\bar{f}_{\pi, p}(x, y)-\overline{\mathbf{f}}_{\pi, p}\left(x^{\prime}, y^{\prime}\right)\right|<\epsilon / 3
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in N_{\delta}(x, y)$, where $N_{\delta}(x, y)$ is an open disk of radius δ centered at (x, y).
We start by observing first that if f is given by (3.2), then $\bar{f}_{\pi, p}$ must be given by

$$
\overline{\mathrm{f}}_{\pi, p}=\sum_{i=1}^{n} \quad \gamma_{i} I_{B_{i}}
$$

We now have two cases to consider:
Case 1. $(\mathrm{x}, \mathrm{y}) \in \operatorname{Int}\left(\mathrm{B}_{\mathrm{j}}\right)$ for some $\mathrm{j} \leq \mathrm{n}$. Then it follows that

$$
\left|\overline{\mathrm{f}}_{\pi, \mathrm{p}}(\mathrm{x}, \mathrm{y})-\overline{\mathrm{f}}_{\pi, \mathrm{p}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right|=\left|\gamma_{\mathrm{j}}-\gamma_{j}\right|=0
$$

for all $\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \in \mathrm{B}_{\mathrm{j}}$. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ [see Fig. (3.1)]

Fig. 3.1
Then (3.4) becomes

$$
\left|f_{p}(x, y)-f_{p}\left(x^{\prime}, y^{\prime}\right)\right|<2 \epsilon / 3
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in N_{\delta}(x, y)$ which implies the continuity of f_{p} at x in this case.
Case 2. (x, y) lies on the boundary of B_{j} but it is none of the vertices of B_{j} for some $\mathrm{j} \leq \mathrm{n}$.

FIG. 3.2

Then it follows from (3.6) that

$$
\left|\overline{\mathrm{f}}_{\pi, \mathrm{p}}(\mathrm{x}, \mathrm{y})-\overline{\mathrm{f}}_{\pi, \mathrm{p}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right|=\left|\gamma_{\mathrm{j}}-\gamma_{\mathrm{j}}\right|=0
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in B_{j} \cap N_{\delta}(x, y)$ where $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ and δ_{1} and δ_{2} as shown in Fig. (3.2).
Now, consider $\left(x^{\prime}, y^{\prime}\right) \in B_{j}^{c} \cap N_{\delta}(x, y)$, and suppose that

$$
\left|f_{\pi, p}\left(x^{\prime}, y^{\prime}\right)-\bar{f}_{\pi, p}(x, y)\right|=\bar{f}_{\pi, p}\left(x^{\prime}, y^{\prime}\right)-\bar{f}_{\pi, p}(x, y)=\gamma_{j+1}-\gamma_{j}>\epsilon / 3
$$

Then, we obtain

$$
\epsilon / 3<\gamma_{j+1}-\gamma_{j}=\left(\gamma_{j+1}-\tau_{j+1}\right)+\left(\tau_{j+1}-\tau_{j}\right)+\left(\tau_{j}-\gamma_{j}\right)
$$

Since $\tau_{j+1}-\tau_{j}<\epsilon / 9$ by (3.3), we may assume without loss of generality that

$$
\gamma_{j+1}-\tau_{i+1}>\epsilon / 9
$$

In such a case let

$$
\gamma_{j+1}^{*}=\gamma_{j+1}-\epsilon / 9
$$

Hence,

$$
\gamma_{j+1}^{*}-\gamma_{j}=\left(\gamma_{j+1}-\gamma_{j}\right)-\epsilon / 9>\epsilon / 3-\epsilon / 9=2 \epsilon / 9>0
$$

Now, let $\overline{\mathrm{f}}^{*}{ }_{\pi, \mathrm{p}}$ be the non-decreasing step function defined on Ω by

$$
\overline{\mathbf{f}}_{\pi, p}^{*}=\cdot \sum_{\substack{i=1 \\ i \neq j+1}}^{n} \gamma_{i} I_{B_{i}}+\gamma_{j+1}^{*} I_{B_{j+1}}
$$

Then,

$$
\begin{aligned}
& \left\|\overline{\mathrm{f}}_{\pi, \mathrm{p}}^{*}-\overline{\mathrm{f}}_{\pi}\right\|_{\mathrm{p}}^{\mathrm{p}}=\sum_{\substack{i=1 \\
\mathrm{i} \neq j+1}}^{\mathrm{n}}\left|\gamma_{\mathrm{i}}-\tau_{\mathrm{i}}\right|^{\mathbf{p}} \mathbf{A}\left(\mathrm{B}_{\mathrm{i}}\right) \\
& \quad+\left|\gamma_{\mathrm{j}+1}^{*}-\tau_{\mathrm{j}+1}\right|^{\mathbf{p}} \mathbf{A}\left(\mathbf{B}_{\mathrm{j}+1}\right)
\end{aligned}
$$

while,

$$
\left\|\bar{f}_{\pi, p}-\bar{f}_{\pi}\right\|_{p}^{p}=\sum_{i=1}^{n}\left|\gamma_{i}-\tau_{i}\right|^{p} A\left(B_{i}\right)
$$

But notice that (3.7) and (3.8) imply that

$$
\begin{aligned}
\gamma_{j+1}^{*}-\tau_{j+1} & =\gamma_{j+1}-\epsilon / 9-\tau_{j+1} \\
& =\left(\gamma_{j+1}-\tau_{j+1}\right)-\epsilon / 9>\epsilon / 9-\epsilon 9=0
\end{aligned}
$$

or,

$$
0<\gamma_{j+1}^{*}-\tau_{j+1}<\gamma_{j+1}-\tau_{j+1}
$$

or.

$$
\left|\gamma_{j+1}^{*}-\tau_{j+1}\right|^{P}<\left|\gamma_{j+1}-\tau_{j+1}\right|^{P},
$$

which implies upon comparing (3.10) and (3.11) that

$$
\mid \overline{\mathrm{f}}_{\pi, \mathrm{p}}^{*}-\overline{\mathbf{f}}_{\boldsymbol{\pi}}\left\|_{\mathrm{p}}<\right\| \overline{\mathbf{f}}_{\pi, \mathrm{p}}-\overline{\mathbf{f}}_{\pi} \|_{\mathrm{p}} .
$$

Contradiction! Thus, our assumption is not correct and hence we must have

$$
\left|f_{\pi, p}(x, y)-f_{\pi, p}\left(x^{\prime}, y^{\prime}\right)\right|<\epsilon / 3
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in B_{j}^{c} \cap N_{8}(x, y)$. Therefore (3.4) becomes

$$
\left|f_{p}(x, y)-f_{p}\left(x^{\prime}, y^{\prime}\right)\right|<2 \epsilon / 3+\epsilon / 3=\epsilon
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in N_{\delta}(x, y)$.
Case 3. (x, y) is the vertex of a square (Fig. 3.3)

Fig. 3.3

This case can be treated by splitting $\mathrm{N}_{8}(\mathrm{x}, \mathrm{y})$ to four different parts, and then applying the steps of case 2 . This completes the proof

Corollary 1. The function $f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$ is continuous on Ω when f is continuous on Ω.

Proof. Since f_{∞} is the uniform limit of continuous functions, it must be continuous

References

[1] Darst, R.B. and Huotari, R., Monotone L_{1} - approximation on the unit n-Cube, Proc. Amer. Math. Soc. 95(3): 425-428 (1985).
[2] Darst, R.B. and Sahab, S., Approximation of continuous and quasi-continuous functions by monotone functions, J. Approximation Theory 38: 9-27 (1983).
[3] Landers, D. and Rogge, L., On projections and monotony in L_{p} - spaces, Ann. Probab. 7: 363-369 (1979).
[4] Shilov, G.E. and Gurevich, B.L., Integral, Measure and Derivative: a Unified Approach, PrenticeHall, Englewood Cliffs, N.J. (1976).
[5] Ubhaya, V.A., Isotone optimization I, J. Approximation Theory 12: 146-159 (1974).
[6] Ubhaya, V.A., Isotone optimization II, J. Approximation Theory 12: 315-331 (1974).
[7] Ubhaya, V.A., Almost monotone approximation in L ${ }_{\infty}$, J. Math. Anal. Appl. 49: 659-679 (1975).

أفضـــل تقـريبـات L

قسم الرياضيات ، كلية العلوم ، جامعة اللكك عبد العزيز ، جــــدة ، الملكثة العربية السعودية

في هذا البحث نعرف شبه الاتصال على الوحدة المربعة ، ونثبت أن تقريبات

