
J.K.A Sci., vol. 1, pp. 201-212 (1409 A.H./1989 A.D

Best L -Approximations to Continuous and
Quasi-ContinJous Functions by Non-Decreasing Functions

on the Unit Square

SALEM M.A. SAHAB

Department of Mathematics, Faculty of Science,
King Abdulaziz University, Jeddah, Saudi Arabia.

ABSTRACT. The author introduces the definition of quasi-continuity on the
unit square [0,1] x [0,1]. LetQ be the Banach space, under the sup-norm,
of quasi-continuous functions on the unit square. Let M denote the closed
convex cone in Q comprised of non-decreasing functions on the unit square.
Let C be the space of continuous functions on the unit square. For f E Q and
1< p < 00, letf denote the bestL -approximation tofbyelementsofM. He

P .p

shows that ~ converges uniformly as ptends to infinity to abestL=-appr9x-
imation by elements of M. Moreover if f E C, then each ~ EC and so is f=.

1. Introduction

We start with some introductory remarks and notations in the plane R2, The
generalization from R2 to RR where n > 2 is easy. We choose R2 since it is much easier
to visualize and understand the ideas and concepts introduced here.

Let fl be the unit square in R2. Let ~ denote the 2-dimensional Lebesgue measure
on fl. Let CT consist of the ~-measurable subsets of n, and for I < P ~ 00, let Lp = Lp
(fl, CT, ~).lfx = (Xl,X2) andy = (Yl,yJ are elementsoffl, we 'f"rite x oS yonlYlfxloS
Yl and "2 oS Y2. By a function, unless we specify otherwise, we mean a real-valued
function defined on fl.

A function g: fl-+ R is said to be non-decreasing in each variable separately if X,
Y Efland x = (Xl,XJ oS (Yl,yJ = y imply that g(Xl,XJ oS g(Yl,yJ. Such a function is
said to be non-decreasing on 0. if the following condition is also satisfied: If x is in the
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boundary of 0., then

inf g(y) y:sx} x = (D,xz) or x = (xI,D)
g(x) = (1.1)

sup g(y): y ~ x} otherwise.

Let M consist ~f all non-decreasing functions on o. Then M is closed and con-
vex[l.p.425].

Next, we introduce the definition of the discontinuity of the first kind and the de-
finition of quasi-continuity on O. This definition generalizes the definition of quasi-
continuity on [0,1] as described in Darst and Sahab[Z].

Definition. Let (Xl,yJ EO. A function f is said to have a discontinuity of the first
kind at (Xl,yJ if given E > 0, there exists 8> 0 and Ll, Lz E R such that for all (x,y) E
0 with (Xl,yJ ~ (x,y) and dp«Xl,yJ, (x,y» < 8 we have If(x,y) -LJ < E. Also for
(Xl,yJ ~ (x,y) and dp«Xl,yJ, (x,y» < 8 we have If(x,y) -Lzi < E.

We denote this by writing

f(x,y) = Lllim
(x,y) t (xl,yt>

and,
lim f(x,y) = ~ , (1.3)

(x,y) i (xi,yt>

We call Ll, the lower-hand limit of f at (Xl,yJ, and ~ the upper-hand limit of f at
(Xl,yJ.

y

x

FIG. 1.1
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Definition. A function f is said to be quasi-continuous on 0 if for all points (XI,yJ
E Int 0, both the lower and upper hands limits exist. For (O,yJ,(XI'O) E a 0, Xl 4= I 4=
YI the upper-hand limit must exist, and for (I,yJ, (XI,I) E a 0, Xl 4= 0 4= the lower-
hand limit must also exist.

This definition is consistent with the definition of a monotone non-decreasing
function as we show in the next lemma.

Lemma. lifE M, then fE Q.

Proof. Let (XI,yJ E Int o. Then for (x,y) oS (XI,yJ we have

LI = lim f(x,y) = sup {f(x,y) : (x,y) oS (XI,yJ}
(x,y) f (xI,Yt>

and,

lim
(x,y) J, (Xl'Yl

f(x,y) = inf f(x,y) : (x,y) ~ (Xl,yJ}=
~2

Similarly, we consider points on the boundary of 0 as mentioned earlier in the de-
finition of non-decreasing functions.

As done by Darst and Sahab[2] we consider every f in Q as bounded Lebesgue
measurable function, we we let

[f] = {g:g is measurable, f = g a.e.} (1.4)

be the corresponding elements of L~.

A function fE Q is zero <=> for every (Xl,yJ E Int 0,

lim f(x,y) = lim f(x,y) = O.
(z,y) t !(xl'Yl) (z,y) ~ (zl'Yp

Next, let Q* denote the space of functions f E Q such that

f(O,yJ = lim f(O,y)
(O,y) t (O,Yp

and

f(XI'O) = Jim
(x,O) l (x}O)

f(x,O)

where 0 S Xl'Yl < 1, and
f(XI,YJ = lim f(x,y)

(x,y) t (xI'YI)

For all (x,y) E Int.o. U {(I,yJ, (xI,I) : 0 < XI'YI :5 I}.

Oearly we have a linear isometry between Q* and the embedding of Q in Loo(.o.).

Now, let P denote the set of sqpare partitions 1T partitioning .0. into n squares of
eQual areas as shown in Fig. 1.2.
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FIG. 1.2

Let IB denote the indicator function of a square B ~ fi, i.e., IB(x,y) = 1 if (x,y) E B
and IB(x,y) = 0 otherwise.

Denote by S* the dense linear subspace of Q comprised of all steps functions of

n n
= I ai lB.' ai E R, fi = U Hi with Hi n Bj = 0, i~, j.

i=l I i=l

It was shown by Darst and Sahab[2) that for n [0,1], f converges uniformly as p~
00 to a best L~- approximation to fby monotone l1on-decreasing functions on [0,1].

From now on, we consider Q*, and we look at best Lp-approximations to elements
of Q* by elements of M* = M n Q*.

2. Basic Generalizations

In this section we obtain some results for approximations on n. These results are
established by modifying the proofs of the corresponding results in Drast and

Sahab[2] for functions on [0,1].
It is very important at this stage to be familiar with the concepts, results and proofs

in Drast and Sahab[2], in order to understand the briefings mentioned in what follows

of this section.
n

Let 1T = U B. with B. n B. = 0 be a P artition of n into a set of disjoint sub-
I I J

;=1
squares of equal area.

Let X = {Xl,X2 , , xJ be a finite partially ordered set in the plane. The literature

in Darst and Sahab[2.pp.10-ll] which is extracted from Ubhaya[6] carries over in the
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same manner.

Lemma 1. If f E S:, then fp E S: for all p, 1 < P < 00, where S: = S", n Q*

Proof. Suppose fp is not constant a.e. on some subsquare Bj' Then let

9. = essinf {fp(t) : t E Bj} ,

and

u = essup {fp(t) : t E H) .

Clearly £. < u. Choose' E [£.,u] such that

If; -' 'I = inf { Ifj -rl : r E [£"u]} .

Then the monotone non-decreasing function defined by

f~(t) = " t E Hj ,

= fp(t) otherwise,

I ~

is a better best Lp -approximation to f since

n .j 1
:1 fB; Iii -fp(t)IP dt + fB)fj -'- tiP dtl P

I i~l fB; Iii -fp(t)IP d-t + fB)fj -fp(t)IP dt

i*j

<

Of,

III -f;lIp < III -fpllp .

Contradiction! Hence fp must be constant everywhere on Bj and fp E S:

n
Theorem 1. Let f E S* be given by f = I fi lB.

i=1 I

For every p, 1 < P < 00, let wp = {wp)~=l be defined by

Wp,i = A(BJ = Area ofBj (2.3)

for all i. Let ~ = {gp,i}~=l be as defined by Darst and Sahab[2! and Shilov and
Gurevich[4],

~.i = max miD Up (L n u)
{U:iEU} {L:iEL}

miD max Up (L n u)
{L;if.L} {U:iEU}
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Then fp is given by

Proof. By the last lemma, we have fp E S;. For every i, let

tj = (Xi,YJ = Center of Bi,

and let X = {tl' t2 ,..., to}. Then X is partially ordered. Consider{fi}~=1 as a finite real
valued function defined on X, and leth = {hi}~ =1 be a monotone non-decreasing fiinc-
tion on X. The rest of the proof follows from Theorem 2 of Darst and Sahab[2],
through simple modifications as was done in Lemma 1.

Theorem 2. Let f E S; and let fp be as given in Theorem 1. Thenip converges as
p ~ 00 to the monotone non-decreasing function foo E S; given by

0

f~ = .I g.",i IBj (2.6)
1=1

where g". = lim ~ i = max min ~(X)(Ln V).
,1 p-+l ' {U:ieU} {L:ieL}

Proof. Follow the proof of Theorem 3 in Darst andSahab[2] with the right modifi-
cation.

Next, we state some remarks, definitions and results which are generalizations of
their counterparts discussed in Darst and Sahab[2].

Remark 1. Iffe S:, We denote it by f",. Similarly, we let

f""p = (f",)p'

and,

f 00 = (f_)oo = Jim f P .
1r", 1r,

p-+oo

Remark 2. ( a) Let f and g be elements of Q* such that f ~ g. Then

fp:5~
forallp,l<p<oo.

(b) For every constant c,

(f + c)p ~ ~ + c .

Definition. Let f E Q* and let 1T ~ {Bi}~=l be a partition of O. The oscillation of f

over Bj is defined by

(2.7)'iT [f,Bi] = sup {f(X) -f(Y) : x,y E Bi

and the oscillation of f over1T is defined by

'iT (f,1T) = max {'iT [f,Bi]} .
l="j="n

(2.8)
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Lemma 2. Let 1T' = {B;}f~l be a refinement of 1T = {Bi}~=l ; n < n' (written

1T < 1T'). Then cr (f,1T') :5 cr (f,1T).

Remark 3. Let fE Q* and let E > 0 be given. Then there exists a partition 1r such

that u (f,'IT) < E,
Moreover, if 0 <E' < E, then there is a refinement 'IT' of 'IT such that u (f,'IT') < E'.

Hence u (f,'IT) can be made as small as possible by refining 'IT. We denote this by

writing
lim a (f,1T) = 0 .(2.9)
1T

Definition. Let f E Q* and 1T = {Bj}~ =1 be a partition of n. For every i, 1 s i s n, let

tj = inf f(X,Y), (2.10)
(X.y)EBj

and
(2.11)Ti = sup f(X,Y)

(i.y)EBi

Then the two expressions
n

I
i=l

t. l B.,I I
f =
-1T

and, n

!.
i=l

f, T. l B.,1 1
=

(2.15)

are called the lower and upper step functions generated by 1r, respectively.
,

Definition. For ~ and f", defined above, let
f""p = (f",)p ;

!""p = (~)p ;

and,
f..,oo = .(f..)oo = Jim f..,p , (2.16)

p_oo

k,oo = (f..)oo = lim k,p .(2.17)
p_oo

The proofs of the following two lemmas can be generalized easily from the proofs
of Lemma 3 and Lemma 4 in Darst and Sahab[2], respectively.

Lemma 3. For aIlp, 1 < P < 00, we have

0 .s I..,p -!..,p

:5 

a (f,1T) ,

and,
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OSf""",-!."""scr(f,'IT) .

Lemma 4. Let fe Q* and let 'IT < 'IT'. Then

!""p S !"",pS f"",p S f""p S !"',p + cr(f,'IT) ,

!,.,oo :5 !"',oo:5 I1T',oo :5 I1T'oo :5 !1T,OO + u(f,7r)

Finally, in this section, we state the following Theorem,

Theorem 3. Let f E Q* with best monotone Lp -approximation fpo Then

lim I1T,p = lim t"p = fp ,
1T 1T

= f = lim f
~ p

p--.~

= lim f ~=.
1r

Proof. See the proofs of Theorems 4 and 5 in [2, pp.18-19].

3. The Case When f Is Continuous

We choose to write the full proof of the foJlowing theorem because of the nature of
the work involved here. .

Theorem 4. Let f be continuous on 0, then fp is continuous, 1 < P < 00,

Proof. Let (x,y) be an interior point of 0 and let it be fixed. Let E > 0 be given.
Then

Ifp(x,y) -fp(x' ,y')1 :$Ifp(x,y) -I",p(x,yl

+ II",p(x,y) -I",p(x' ,y')1 + II",p(x",y') -fp(x',y')1

Since Theorem 3.1 implies that
(3.1)

fp(x,y) = lim f",p(x,y)
"

for all (x,y) E 0, we can choose a partition 'iT = {Bi}~ =1 with the following

(1) Each of the first and third term on the right hand side of(3.1) is less than e/3.

(2) Suppose I" is given by

(3.2)
n

f1T = I Tj lB. .
j=l I

Then by the uniform continuity of f over .0. we can have

ITj-Tj-J < E._/9 (3.3)
for all i = 2,3 ,..., n
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Thus, (3.1) becomes

Ifp (x,y)-fp (x',y') I < E /3 + I f.,.,p (x,y)- f.,.,p(x',y') 1+ E /3 (3.4)

for all (x',y') E O. We need to show that there exists a real number 8> 0 such that

If.,.,p (x,y) -f.,.,p(x' ,y')1 < ~ / 3 (3.5

for all (x',y') E N& (x,y), where N& (x,y) is an open disk of radius 8 centered at (x,y).

We start by observing first that if f is given by (3.2), then f.,.,p must be given by
n

f.,.P = I "Vi IB .(3.(
, . 1 I)=

We now have two cases to consider:

Case 1. (x,y) E Int (By for some j :s n. Then it follows that

!f""p(X,y) -f""p(x' ,y')! = l'Yj -'YJ = 0

for all (x',y') E Bj. Let 8 = min (81,82) [see Fig, (3.1)]

Bj

FIG.3.t

Then (3.4) becomes

Ifp(x,y) -fp(x' ,y')1 < 2 E / 3

for all (x' ,y') E Ns(x,y) which implies the continuity of fp atx in this case.

Case 2. (x,y) lies on the boundary ofBj but it is none of the vertices orB. for some
.I.
J ::; ll.

Bj
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Then it follows from (3.6) that

If",p(x,y) -f",p(x' ,y')1 = !'Vj -'Vjl = 0

for all (x' ,y') E Bj n Ns(x,y) where 8 = min (81,8J and 81 and 82 as shown in Fig. (3.2).

Now, consider (x',y') E Bj n Ns(x,y), and suppose that

If",p(X' ,y') -f",p(x,y) I = f",p(x' ,y') -f",p(x,y) = 'Vj+l -'Vj > E / 3..

Then, we obtain .

Since Tj+l

E / 3 < 'Yj+l- 'Yj = ('Yj+l- Tj+J + (Tj+l- Tj) + (Tj~ 'YJ

-Tj < E / 9 by (3.3), we may assume without loss of generality that

'Yj+l-Ti+l > E/9.

In such a case let

'Yj+l = 'Yj+l-e/9

Hence,

Now, letf*

'Vj +1 -'Vj = ('Vj+l- 'V) -E /9> E /3 -E /9 = 2 E /9> 0 .

1r,p be the non-decreasing step function defined on 0. by

n
I:,p = -I 'Vi IB + 'Vj +1 IB-

i=1 I )+1

i#j+l

Then,
11-* - liP -f""p -f", P -

n

I l'Vi -TJP A(BJ
i=l

i*j+l

+ I 'Vj +1 -Tj+l1P A(Bj+J '

while,
n

I l'Vi -TJP A(BJ
i=l

11f",p -I"II~ =

But notice that (3.7) and (3.8) imply that
'YJ+I-Tj+l = 'Yj+l-e/9-Tj+l

= ('Yj+t-Tj+J-e/9 > e/9-e9 = 0,

or,
0 < 'V] +1- Tj+l < 'Vj+l -Tj+l

or.
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l'Vi +1 -Tj+l1P < l'Vj+l -Tj+l1P ,

which implies upon comparing (3.10) and (3..11) that

If:,p -f'/fllp < Ilf'/f,p -f'/fllp .

Contradiction! Thus, our assumption is not correct and hence we must have

If'/f,p(x,y) -f'/f,p(x' ,y')1 < E / 3 ,

for all (x',y') E Bj n N6(x,y). Therefore (3.4) becomes

Ifp(x,y) -fp(x' ,y')1 < 2 E / 3 + E / 3 = E ,

for all (x',y') e N&(x,y).

Case 3. (x,y) is the vertex of a square (Fig. 3.3)

r ~ x , y
I I
I

Bj

L ~

FIG. 3.3

This case can be treated by splitting N&(x,y) to four different parts, and then applying
the steps of case 2. This completes the proof

Corollary 1. The function f~ = lim fpiscontinuousonnwhenfiscontinuous
p-.~

onn.

Proof. Since f~ is the unifonn limit of continuous functions, it must be continuous.
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