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ABSTRACT. The author introduces the definition of quasi-continuity on the
unit square [0,1] x [0,1]. Let Q be the Banach space, under the sup-norm,
of quasi-continuous functions on the unit square. Let M denote the closed
convex cone in Q comprised of non-decreasing functions on the unit square.
Let Cbe the space of continuous functions on the unit square. For f e Q and
1 <p<m,letf denote the best L, -approximation to f by elements of M. He
shows that f, converges uniformly as p tends to infinity to a best L, — approx-
imation by elements of M. Moreover if f € C, then each f,eCandsoisf,.

1. Introduction

We start with some introductory remarks and notations in the plane R? The
generalization from R? to R” where n > 2 is easy. We choose R?since it is much easier
to visualize and understand the ideas and concepts introduced here.

Let € be the unit square in R%. Let p. denote the 2-dimensional Lebesgue measure
on (). Let o consist of the p-measurable subsets of 2, and forl < p < o, let LP =L
(Q, 0, p). £ = (x;,X,)) and § = (y,,y,) are elements of (), we write X < jonly if x, =
y, and x, < y,. By a function, unless we specify otherwise, we mean a real-valued
function defined on ().

A function g: {} — R is said to be non-decreasing in each variable separately if %,
¥ e Qand x = (x,,%,) < (y,,¥,) = ¥ imply that g(x,,x,) < g(y,,y,). Such a function is
said to be non-decreasing on ( if the following condition is also satisfied: If X is in the
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boundary of , then
inf g(§) §y=x} x=(0,x,) or x=(x,,0)
g(®) = (1.1)
sup { g(y) : y=x} otherwise.

Let M consist of all non-decreasing functions on 2. Then M is closed and con-
vexl1.p-425] :

Next, we introduce the definition of the discontinuity of the first kind and the de-
finition of quasi-continuity on €. This definition generalizes the definition of quasi-
continuity on [0,1] as described in Darst and Sahabl?l.

Definition. Let (x,,y,) € Q. A function f is said to have a discontinuity of the first
kind at (x,,y,) if given € > 0, there exists & > 0 and L;, L, € R such that for all (x,y) €
Q with (x,,y,) =< (x,y) and d,((x1y,), (x,y)) < & we have |f(x,y) — L,| < e. Also for
(xp:y1) = (x,y) and dy((x,,y,), (x,)) < 8 we have [f(x,y) - L,| <e.

We denote this by writing
lim f(x,y) = L,
xy) T (xp.y1)
and,

lim  f(xy) = L, , 1.3)
xy) 4 (x.yp)

We call L,, the lower-hand limit of f at (x,,y,), and L, the upper-hand limit of f at
(x,¥,)- ;
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Definition. A function f is said to be quasi-continuous on { if for all points (x,,y,)
€ Int (2, both the lower and upper hands limits exist. For (0,y,), (x,,0) €8 Q,x, # 1 #
y, the upper-hand limit must exist, and for (1,y,), (x;,1) € 8 Q, x, # 0 # the lower-
hand limit must also exist.

This definition is consistent with the definition of a monotone non-decreasing
function as we show in the next lemma.

Lemma. If fe M, thenfe Q.
Proof. Let (x,y,) € Int Q. Then for (x,y) < (x,,y,) we have

L = lim  f(x,y) = sup {f(x,y) : (x.y) = (x,,y)) }
(X)Y) T (xerI)

and,

= lim  f(x,y) = inf f(x,y) : (x,y) = (x;,y) }
xy) 1 (x4.91

Similarly, we consider points on the boundary of ) as mentioned earlier in the de-
finition of non-decreasing functions.

As done by Darst and Sahab!?l we consider every f in Q as bounded Lebesgue
measurable function, we we let

[f] = { g:g is measurable, f = ga.e.} (1.4)
be the corresponding elements of L.

A function f € Q is zero <=> for every (x,,y,) € Int Q,

lim f(x,y) = lim f(x,y) = 0
(x.y) T!("]'Yl) xy) ¥ (x1.y7)
Next, let Q* denote the space of functions f € Q such that
f0,y) = lim  {(0,y)

©y) 1 0.y9)
and

f(x,,0) = lim f(x,0)
®0) | (x,0)

where 0 =x,,y, <1, and

f(xpy) = lim  f(x,y)
xy) 1 (xp5y9)

Forall (x,y) e Int Q U {(1,y,), (x;,1) : 0 <x,,y, = 1}.
Clearly we have a linear isometry between Q* and the embedding of Q in L_(Q2).

Now, let P denote the set of square partitions = partitioning {} into n squares of
equal areas as shown in Fig. 1.2,
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Let I, denote the indicator function of a square B={,ie.,Ijxy)=1if(x,y)eB
and I;(x,y) = 0 otherwise.

Denote by S* the dense linear subspace of Q comprised of all steps functions of

ims

n
aly,aeR, Q=UB wthBNB =0i#,j
i i=1

It was shown by Darst and Sahabl?! that for n [0,1], f, converges uniformly as p—
o to a best L — approximation to f by monotone non-gecreasing functions on [0,1].

From now on, we consider Q*, and we look at best Lp-approximations to elements
of Q* by elements of M* =M N Q*.

2. Basic Generalizations

In this section we obtain some results for approximations on (2. These results are
established by modifying the proofs of the corresponding results in Drast and
Sahabl? for functions on [0,1]. .

It is very important at this stage to be familiar with the concepts, results and proofs
in Drast and Sahabl?!, in order to understand the briefings mentioned in what follows
of this section.

n -

Let # = U B, with B, N B; = 0 be a partition of Q) into a set of disjoint sub-

i=1 ‘

squares of equal area.

Let X = {X,,X, ,...., X,} be afinite partially ordered set in the plane. The literature
in Darst and Sahabl2?p-10-11]1 which is extracted from Ubhayalél carries over in the
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same manner.
Lemma 1. Iffe S, thenf e S} forallp, 1 <p <, where S =S_N Q*
Proof. Suppose f; is not constant a.e. on some subsquare B;. Then let
2 = essinf {fp(f) ‘te B},
and
u=essup{f,(t):teB}.
Clearly 2 <u. Choose { € [¢,u] such that
If;= ¢l = inf{|f;— 1| : re[g,u]} .
Then the monotone non-decreasing function defined by
f;(f) =, te B,,

= f(t) otherwise,

is a better best L — approximation to f since
1
n _ _ i
'21 I, I - f(OP dt + fBijj =P dft P
i=

< él fo, = L,OP dT + fylf~£,(OP d't'I b
i#
or,
lif - €3, < NE-£l, -

Contradiction! Hence f, must be constant everywhere on B; and feS;

=

Theorem 1. Let f € S* be given by f = . 1fi Iy,

Foreveryp,1 <p <, letw, = {w, }i_, be defined by

w,; = A(B;) = Area of B,

205

(2.3)

for all i. Let g, = {g,}{_, be as defined by Darst and Sahabl?! and Shilov and

Gurevich4l,

8,; = max min u, (L N U)
’ {U:ieU} {L:iel}

min max u, (L N U)
{L:ieL} {U:ieU}
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Then f is given by

e _ 5
tp = gp,! IFI‘

j=

Proof. By the last lemma, we have f,eS;. For every i, let
t; = (x,,y;) = Center of B,

andlet X = {t, 3ty e t.}. Then X is partially ordered. Consider {f}?_, as a finite real
valued function defined on X, and leth = {h;}!_, be amonotone non-decreasing func-
tion on X. The rest of the proof follows from Theorem 2 of Darst and Sahabl?],
through simple modifications as was done in Lemma 1.

Theorem 2. LetfeS; and let f be as given in Theorem 1. Then f, converges as
P — =« to the monotone non-decreasing function £, € S* given by
f.= 3 gl _ 2.6)
i=1 s
here g_. = lim . = max min <(LN U).
W Boi po1 Bpi {UiieU}  {L:iel} il )

Proof. Follow the proof of Theorem 3 in Darst and Sahabl?] with the right modifi-
cation.

Next, we state some remarks, definitions and results which are generalizations of
their counterparts discussed in Darst and Sahabf2,

Remark 1. 1Iff€ S?. We denote it by f_. Similarly, we let

fop = (B>
and,
frw = (), = iir_x)lx fop -
Remark 2. (a) Let f and g be elements of Q* such that f < g. Then
=g

forallp,1<p< .
(b) For every constant c,
f+o,=1 +c.

Definition. Let f € Q* and let w = {B}_, be a partition of Q. The oscillation of f
over B, is defined by :

o [f,B;] = sup {f(x) - f(y) : X,yeB, 2.7
and the oscillation of f over 7 is defined by
o (fw) = max {o [fB]} . (2.8)

1=<i=<n
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Lemma 2. Let ' = {B}Y, be a refinement of w = {B}j_, ; n <1’ (written
m<='). Then & (f,w’) = @ (f,m). .

. Remark 3. Let f e Q* and let € > 0 be given. Then there exists a partition such
that o (f,m) <k¢, :

Moreover, if 0 < €’ < ¢, then there is a refinement «' of wsuch that & (f,n") <€'.
Hence & (f,7) can be made as small as possible by refining w. We denote this by
writing

lim & (£,w) =0. (2.9)
Definition. Letfe Q*andw = {B}?_, be apartitionof (. Foreveryi,1<i=n,let
t, = inf f(xy), : (2.10)
(X.y)eB; .
and.
7, = sup f(x)y) (2.11)
@ 7)eB;
Then the two expressions
= = 2 ti IB; ’
i=1
and,
_ n
f = 2 11,
i=1 !

are called the lower and upper step functions generated by , respectively.

Definition. For f_and fﬂ defined above, let

fﬂ’p = (Tw)p ;
and,
fow = (). = m T, (2.16)
p—>
fow = (€)= lim £ . (2.17)
p—y:c N

The proofs of the following two lemmas can be generalized easily from the proofs
of Lemma 3 and Lemma 4 in Darst and Sahabl?, respectively.

Lemma 3. Forallp, 1 < p <, we have
' 0=%,,~f,,<¢(Em,

and,
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0=<T ,-f .=<T(m.
Lemma 4. Letfe Q* andlet w < w'. Then
t'""P = f’ﬂ":PS f‘ll",p = f1'r,p = fm,p + E(f,ﬂ) ’

foosf .<f..=<T .<f .+0@Fmw).
Finally, in thig section, we state the following Theorem.

Theorem 3. Let f € Q* with best monotone L, - approximation f,. Then
lim f_ = l1irm fLp=10,

k)

lim f _ =limf , =f, =lim f
( ! K po®

Proof. See the proofs of Theorems 4 and 5 in [2, pp.18-19].

3. The Case When f Is Continuous

We choose to write the full proof of the following theorem because of the nature of
the work involved here. ’

Theorem 4. Let f be continuous on ), then fp is continuous, 1 < p < e,

Proof. Let (x,y) be an interior point of () and let it be fixed. Let € > 0 be given.
Then

IE,00.3) = £,y = [6,(6y) - T, (0] |
+ Fag) Ly + [,y -fy)l G
Since Theorem 3.1 implies that
f.(x.y) = l7irm £ o(X.Y)
for all (x,y) € (2, we can choose a partition w = {B;}?_, with the following
(1) Eachofthe first and third term on the right hand side of (3.1) is less than €/3.
(2) Suppose f_ is given by ’

f,= % 7. 3.2)
Then by the uniform continuity of f over {} we can have

-7l <e/9 (3.3)

foralli=23,...,n
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Thus, (3.1) becomes

Ity —f, & y) [ <e/3+|,, xy)-T,,&xy) | +e/3 (34
for all (x',y’) € Q. We need to show that there exists a real number 8 > 0 such that
|T1r,p (X’Y) _fﬂ,p(x,’y’)| < § / 3 - (35

for a11~(x’ ,y") €N, (x,y), where N; (x,y) is an open disk of radius 3 centered at (x,y).

We start by observing first that if f is given by (3.2), then fﬁ‘p must be givén by
(3.¢

We now have two cases to consider:
Case 1. (x,y) € Int (B) for some j < n. Then it follows that
|f1'r,p(x,y) - _f-rr,p(x',y')| = I‘YJ - 'yll = 0
for all (x',y’) e B;. Let 8 = min (3,,3,) [see Fig. (3.1)]

Then (3.4) becomes
l£,(x,y) - £,(x",y")| <2e/3
for all (x',y") e Ny(x,y) which implies the continuity of f  at x in this case.

Case 2. (x,y) lies on the boundary of B, but it is none of the vertices of B, for some

i=<n.
r ]
: 82 ,/_(xltYI)
Bj! -
JI ‘L (x,y)
s
L b N(x,y)

FiG. 3.2
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Then it follows from (3.6) that
l_f.‘n',p(x’Y) __f-w,p(xl7y’)| = hll - 'Y]I = 0
forall (x',y") e B; N Ny(x,y) where 8 = min (3,,3,) and 8, and 3, as shown in Fig. (3.2).
Now, consider (x',y") € Bf N Ny(x,y), and suppose that
|f-n-,p(x,’y,) _f-n,p(x’y)l = f-u-,p(x”y’) - ?ﬂ,p(x’y) = 'Yj+l - ‘Yj > € / 3 R4
Then, we obtain
€/3<% =% = V=T T (T =) + (7-)
Since 7, -7, <e/9by (3.3), we may assume without loss of generality that
Yie1— Tier > €/9 .
In such a case let
Yie1 = Vs —€/9
Hence,
Y=Y =V —Y)-€/9>€/3-€/9=2€/9>0.

Now, let f* =,p D€ the non-decreasing step function defined on ) by

- n
f:,p = -.21 Y IBi + ‘y’j?‘HI
i=

Bj41
i#j+1

Then,

_ - n

"f‘:,p - fﬂ||f§ = _2 lv; - 7P A(B)

i#j+l )
+ 1 ¥ = Tl ABLY)

while,

i=1
But notice that (3.7) and (3.8) imply that
Yie T = Y€/ 9Ty
= ('Yj+1‘73+1)‘€/9 >e/9-€9=0,
or,
0 <71~ T4 < Vi1~ Tin

Or.
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Vo1 =Tt <Py =7l
which implies upon comparing (3.10) and (3.11) that
2= Ty <[,y -
Contradiction! Thus, our assumption is not correct and hence we must have
o W) ~ Ky < €/3,
for all (x’,y’) € BS N Ny(x,y). Therefore (3.4) becomes
£, (x,y) - £,(x",y')| <2e/3+e/3=¢,
for all (x’,y’) € Ny(x,y). _
Case 3. (x,y) is the vertex of a square (Fig. 3.3).

This case can be treated by splitting Ny(x,y) to four different parts, and then applying
the steps of case 2. This completes the proof

Corollary 1. The function f, = lim £ iscontinuous on ) when fis continuous
. p—>
on ).

Proof. Sincef, is the uniform limit of continuous functions, it must be continuous.
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