Best L_p-Approximations to Continuous and Quasi-Continuous Functions by Non-Decreasing Functions on the Unit Square

SALEM M.A. SAHAB Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

ABSTRACT. The author introduces the definition of quasi-continuity on the unit square $[0,1] \times [0,1]$. Let Q be the Banach space, under the sup-norm, of quasi-continuous functions on the unit square. Let M denote the closed convex cone in Q comprised of non-decreasing functions on the unit square. Let C be the space of continuous functions on the unit square. For $f \in Q$ and $l , let <math>f_p$ denote the best L_p -approximation to f by elements of M. He shows that f_p converges uniformly as p tends to infinity to a best L_{∞} -approximation by elements of M. Moreover if $f \in C$, then each $f_p \in C$ and so is f_{∞} .

1. Introduction

We start with some introductory remarks and notations in the plane \mathbb{R}^2 . The generalization from \mathbb{R}^2 to \mathbb{R}^n where n > 2 is easy. We choose \mathbb{R}^2 since it is much easier to visualize and understand the ideas and concepts introduced here.

Let Ω be the unit square in \mathbb{R}^2 . Let μ denote the 2-dimensional Lebesgue measure on Ω . Let σ consist of the μ -measurable subsets of Ω , and for $l , let <math>L_p = L_p$ (Ω, σ, μ) . If $\bar{x} = (x_1, x_2)$ and $\bar{y} = (y_1, y_2)$ are elements of Ω , we write $\bar{x} \le \bar{y}$ only if $x_1 \le y_1$ and $x_2 \le y_2$. By a function, unless we specify otherwise, we mean a real-valued function defined on Ω .

A function g: $\Omega \to R$ is said to be non-decreasing in each variable separately if \bar{x} , $\bar{y} \in \Omega$ and $\bar{x} = (x_1, x_2) \le (y_1, y_2) = \bar{y}$ imply that $g(x_1, x_2) \le g(y_1, y_2)$. Such a function is said to be non-decreasing on Ω if the following condition is also satisfied: If \bar{x} is in the

boundary of Ω , then

$$g(\bar{x}) = \begin{cases} \inf g(\bar{y}) & \bar{y} \le \bar{x} \end{cases} & \bar{x} = (0, x_2) \text{ or } \bar{x} = (x_1, 0) \\ \sup \{ g(\bar{y}) : \bar{y} \le \bar{x} \} & \text{otherwise.} \end{cases}$$
(1.1)

Let M consist of all non-decreasing functions on Ω . Then M is closed and convex^[1,p.425].

Next, we introduce the definition of the discontinuity of the first kind and the definition of quasi-continuity on Ω . This definition generalizes the definition of quasi-continuity on [0,1] as described in Darst and Sahab^[2].

Definition. Let $(x_1, y_1) \in \Omega$. A function f is said to have a discontinuity of the first kind at (x_1, y_1) if given $\epsilon > 0$, there exists $\delta > 0$ and L_1 , $L_2 \in \mathbb{R}$ such that for all $(x, y) \in \Omega$ with $(x_1, y_1) \le (x, y)$ and $d_p((x_1, y_1), (x, y)) < \delta$ we have $|f(x, y) - L_1| < \epsilon$. Also for $(x_1, y_1) \ge (x, y)$ and $d_p((x_1, y_1), (x, y)) < \delta$ we have $|f(x, y) - L_2| < \epsilon$.

We denote this by writing

$$\lim_{(\mathbf{x},\mathbf{y}) \uparrow (\mathbf{x}_1,\mathbf{y}_1)} f(\mathbf{x},\mathbf{y}) = \mathbf{L}_1$$

and,

$$\lim_{(x,y) \downarrow (x_1,y_1)} f(x,y) = L_2 , \qquad (1.3)$$

We call L_1 , the lower-hand limit of f at (x_1, y_1) , and L_2 the upper-hand limit of f at (x_1, y_1) .

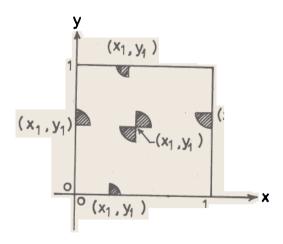


FIG. 1.1

202

Definition. A function f is said to be quasi-continuous on Ω if for all points $(x_1, y_1) \in Int \Omega$, both the lower and upper hands limits exist. For $(0, y_1)$, $(x_1, 0) \in \partial \Omega$, $x_1 \neq 1 \neq y_1$ the upper-hand limit must exist, and for $(1, y_1)$, $(x_1, 1) \in \partial \Omega$, $x_1 \neq 0 \neq$ the lower-hand limit must also exist.

This definition is consistent with the definition of a monotone non-decreasing function as we show in the next lemma.

Lemma. If $f \in M$, then $f \in Q$.

Proof. Let $(x_1, y_1) \in \text{Int } \Omega$. Then for $(x, y) \leq (x_1, y_1)$ we have

$$L_1 = \lim_{(x,y) \uparrow (x_1,y_1)} f(x,y) = \sup \{ f(x,y) : (x,y) \le (x_1,y_1) \}$$

and,

$$L_{2} = \lim_{(x,y) \downarrow (x_{1},y_{1})} f(x,y) = \inf f(x,y) : (x,y) \ge (x_{1},y_{1}) \}$$

Similarly, we consider points on the boundary of Ω as mentioned earlier in the definition of non-decreasing functions.

As done by Darst and Sahab^[2] we consider every f in Q as bounded Lebesgue measurable function, we we let

$$[f] = \{g:g \text{ is measurable}, f = g a.e.\}$$
(1.4)

be the corresponding elements of L_∞.

A function f ϵ Q is zero $\leq >$ for every $(x_1, y_1) \epsilon$ Int Ω ,

$$\lim_{(x,y) \downarrow^{1}(x_{1},y_{1})} f(x,y) = \lim_{(x,y) \downarrow (x_{1},y_{1})} f(x,y) = 0.$$

Next, let Q^* denote the space of functions $f \in Q$ such that

$$f(0,y_1) = \lim_{(0,y) \uparrow (0,y_1)} f(0,y)$$

and

$$f(x_1,0) = \lim_{(x,0) \downarrow (x_1,0)} f(x,0)$$

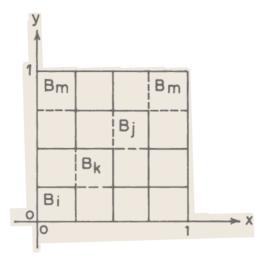
where $0 \le x_1, y_1 < 1$, and

$$f(x_1,y_1) = \lim_{(x,y) \uparrow (x_1,y_1)} f(x,y)$$

For all $(x,y) \in \text{Int } \Omega \cup \{ (1,y_1), (x_1,1) : 0 < x_1, y_1 \le 1 \}.$

Clearly we have a linear isometry between Q^{*} and the embedding of Q in $L_{\infty}(\Omega)$.

Now, let P denote the set of square partitions π partitioning Ω into n squares of equal areas as shown in Fig. 1.2.



Let I_B denote the indicator function of a square $B \le \Omega$, i.e., $I_B(x,y) = 1$ if $(x,y) \in B$ and $I_B(x,y) = 0$ otherwise.

Denote by S* the dense linear subspace of Q comprised of all steps functions of

$$= \sum_{i=1}^{n} a_i I_{B_i}, a_i \in \mathbb{R}, \ \Omega = \bigcup_{i=1}^{n} B_i \text{ with } B_i \cap B_j = \emptyset, i \neq j.$$

It was shown by Darst and Sahab^[2] that for n [0,1], f_p converges uniformly as $p \rightarrow \infty$ to a best L_{∞} – approximation to f by monotone non-decreasing functions on [0,1].

From now on, we consider Q^{*}, and we look at best L_p -approximations to elements of Q^{*} by elements of M^{*} = M \cap Q^{*}.

2. Basic Generalizations

In this section we obtain some results for approximations on Ω . These results are established by modifying the proofs of the corresponding results in Drast and Sahab^[2] for functions on [0,1].

It is very important at this stage to be familiar with the concepts, results and proofs in Drast and Sahab^[2], in order to understand the briefings mentioned in what follows of this section.

Let $\pi = \bigcup_{i=1}^{n} B_i$ with $B_i \cap B_j = \emptyset$ be a partition of Ω into a set of disjoint sub-

squares of equal area.

Let $X = {\{\bar{x}_1, \bar{x}_2, ..., \bar{x}_n\}}$ be a finite partially ordered set in the plane. The literature in Darst and Sahab^[2,pp,10-11] which is extracted from Ubhaya^[6] carries over in the

same manner.

Lemma 1. If $f \in S_{\pi}^*$, then $f_p \in S_{\pi}^*$ for all $p, 1 , where <math>S_{\pi}^* = S_{\pi} \cap Q^*$ Proof. Suppose f_p is not constant a.e. on some subsquare B_j . Then let

$$\ell = \operatorname{essinf} \{ f_n(\overline{t}) : \overline{t} \in B_i \}$$

and

$$u = \operatorname{essup} \{ f_n(\overline{t}) : \overline{t} \in B_i \}$$
.

Clearly $\ell < u$. Choose $\zeta \in [\ell, u]$ such that

$$|\mathbf{f}_{i} - \boldsymbol{\zeta}| = \inf \{ |\mathbf{f}_{i} - \mathbf{r}| : \mathbf{r} \in [\varrho, \mathbf{u}] \}.$$

Then the monotone non-decreasing function defined by

$$f_{p}^{*}(\overline{t}) = \zeta, \qquad \overline{t} \in B_{j},$$
$$= f_{p}(\overline{t}) \qquad \text{otherwise}$$

is a better best L_p – approximation to f since

$$\begin{aligned} \|\mathbf{f} - \mathbf{f}_p^*\| &= \sum_{i=1}^n \int_{\mathbf{B}_i} |\mathbf{f}_i - \mathbf{f}_p(\overline{\mathbf{t}})|^p \, d\overline{\mathbf{t}} + \int_{\mathbf{B}_j} |\mathbf{f}_j - \zeta|^p \, d\overline{\mathbf{t}} \Big|^{\frac{1}{p}} \\ &< \left| \sum_{\substack{i=1\\i\neq j}}^n \int_{\mathbf{B}_i} |\mathbf{f}_i - \mathbf{f}_p(\overline{\mathbf{t}})|^p \, d\overline{\mathbf{t}} + \int_{\mathbf{B}_j} |\mathbf{f}_j - \mathbf{f}_p(\overline{\mathbf{t}})|^p \, d\overline{\mathbf{t}} \right|^{\frac{1}{p}} \end{aligned}$$

or,

$$\|\mathbf{f} - \mathbf{f}_{p}^{*}\|_{p} < \|\mathbf{f} - \mathbf{f}_{p}\|_{p}$$

Contradiction! Hence f_p must be constant everywhere on B_j and $f_p \in S^*_{\pi}$

Theorem 1. Let $f \in S^*$ be given by $f = \sum_{i=1}^n f_i I_{B_i}$

For every p, $1 , let <math>w_p = \{w_{p,i}\}_{i=1}^n$ be defined by

$$w_{p,i} = A(B_i) = \text{Area of } B_i$$
 (2.3)

for all i. Let $g_p = \{g_{p,i}\}_{i=1}^n$ be as defined by Darst and Sahab^[2] and Shilov and Gurevich^[4].

$$g_{p,i} = \max_{\{U:i\in U\}} \min_{\{L:i\in L\}} u_p (L \cap U)$$
$$\min_{\{L:i\in L\}} \max_{\{U:i\in U\}} u_p (L \cap U)$$

Then f_p is given by

$$f_{p} = \sum_{i=1}^{N} g_{p,i} I_{B_i}$$

Proof. By the last lemma, we have $f_p \in S^*_{\pi}$. For every i, let

$$\overline{t}_i = (x_i, y_i) = Center of B_i$$

and let $X = {\tilde{t}_1, \tilde{t}_2, ..., \tilde{t}_n}$. Then X is partially ordered. Consider ${f_i}_{i=1}^n$ as a finite real valued function defined on X, and let $h = {h_i}_{i=1}^n$ be a monotone non-decreasing function on X. The rest of the proof follows from Theorem 2 of Darst and Sahab^[2], through simple modifications as was done in Lemma 1.

Theorem 2. Let $f \in S_{\pi}^*$ and let f_p be as given in Theorem 1. Then f_p converges as $p \to \infty$ to the monotone non-decreasing function $f_{\infty} \in S_{\pi}^*$ given by

$$\mathbf{f}_{\infty} = \sum_{i=1}^{n} \mathbf{g}_{\infty,i} \mathbf{I}_{\mathbf{B}_{i}}$$
(2.6)

where $g_{\scriptscriptstyle{\!\!\!\!\infty,i\!\!\!}}=\lim_{p\to 1}\ g_{\scriptscriptstyle{\!\!\!p,i\!\!\!}}=\max_{\{U:i\in U\}}\ \min_{\{L:i\in L\}}\ \mu_{\scriptscriptstyle{\!\!\infty\!\!}}(L\cap U).$

Proof. Follow the proof of Theorem 3 in Darst and Sahab^[2] with the right modification.

Next, we state some remarks, definitions and results which are generalizations of their counterparts discussed in Darst and Sahab^[2].

Remark 1. If $f \in S_{\pi}^*$. We denote it by f_{π} . Similarly, we let

$$\mathbf{f}_{\pi,p} = (\mathbf{f}_{\pi})_{p} ,$$

and,

$$f_{\pi,\infty} = (f_{\pi})_{\infty} = \lim_{p \to \infty} f_{\pi,p}$$
.

Remark 2. (a) Let f and g be elements of Q^* such that $f \le g$. Then

 $f_p \leq g_p$

for all p, 1 .

(b) For every constant c.

$$(\mathbf{f} + \mathbf{c})_{\mathbf{p}} = \mathbf{f}_{\mathbf{p}} + \mathbf{c} \ .$$

Definition. Let $f \in Q^*$ and let $\pi = \{B_i\}_{i=1}^n$ be a partition of Ω . The oscillation of f over B_i is defined by

$$\widetilde{\sigma} [\mathbf{f}, \mathbf{B}_{\mathbf{i}}] = \sup \{ \mathbf{f}(\overline{\mathbf{x}}) - \mathbf{f}(\overline{\mathbf{y}}) : \overline{\mathbf{x}}, \overline{\mathbf{y}} \in \mathbf{B}_{\mathbf{i}}$$
(2.7)

and the oscillation of f over π is defined by

$$\widetilde{\sigma}(\mathbf{f},\pi) = \max_{1 \leq i \leq n} \{ \widetilde{\sigma} [\mathbf{f},\mathbf{B}_i] \} .$$
(2.8)

206

Lemma 2. Let $\pi' = \{B_i'\}_{i=1}^{n'}$ be a refinement of $\pi = \{B_i\}_{i=1}^n$; n < n' (written $\pi < \pi'$). Then $\widetilde{\sigma}(f,\pi') \leq \widetilde{\sigma}(f,\pi)$.

Remark 3. Let $f \in Q^*$ and let $\epsilon > 0$ be given. Then there exists a partition π such that $\tilde{\sigma}(f,\pi) < \epsilon$,

Moreover, if $0 < \epsilon' < \epsilon$, then there is a refinement π' of π such that $\tilde{\sigma}(f,\pi') < \epsilon'$. Hence $\tilde{\sigma}(f,\pi)$ can be made as small as possible by refining π . We denote this by writing

$$\lim \widetilde{\sigma} (f,\pi) = 0.$$
 (2.9)

Definition. Let $f \in Q^*$ and $\pi = \{B_i\}_{i=1}^n$ be a partition of Ω . For every $i, 1 \le i \le n$, let

$$t_i = \inf_{(\bar{x},\bar{y})\in B_i} f(\bar{x},\bar{y}) , \qquad (2.10)$$

and.

$$\tau_{i} = \sup_{(\overline{x}, \overline{y}) \in B_{i}} f(\overline{x}, \overline{y})$$
(2.11)

Then the two expressions

$$\underline{f}_{\pi} = \sum_{i=1}^{n} t_{i} I_{B_{i}},$$

and,

$$\overline{f}_{\star} = \sum_{i=1}^{n} \tau_i I_{B_i},$$

are called the lower and upper step functions generated by π , respectively.

Definition. For
$$\underline{f}_{\pi}$$
 and \overline{f}_{π} defined above, let
 $\overline{f}_{\pi,p} = (\overline{f}_{\pi})_p$;
 $\underline{f}_{\pi,p} = (\underline{f}_{\pi})_p$; (2.15)

and,

$$\overline{f}_{\pi,\infty} = (\overline{f}_{\pi})_{\infty} = \lim_{p \to \infty} \overline{f}_{\pi,p} , \qquad (2.16)$$

$$\underline{\mathbf{f}}_{\pi,\infty} = (\underline{\mathbf{f}}_{\pi})_{\infty} = \lim_{\mathbf{p} \to \infty} \underline{\mathbf{f}}_{\pi,\mathbf{p}} .$$
(2.17)

The proofs of the following two lemmas can be generalized easily from the proofs of Lemma 3 and Lemma 4 in Darst and Sahab^[2], respectively.

Lemma 3. For all p, 1 , we have

$$0 \leq \overline{f}_{\pi,p} - \underline{f}_{\pi,p} \leq \widetilde{\sigma} (f,\pi) ,$$

and,

S.M.A. Sahab

$$0 \leq \overline{f}_{\pi,\infty} - \underline{f}_{\pi,\infty} \leq \widetilde{\sigma} (f,\pi)$$
.

Lemma 4. Let $f \in Q^*$ and let $\pi < \pi'$. Then

$$\underline{f}_{\pi,p} \leq \underline{f}_{\pi',p} \leq \overline{f}_{\pi',p} \leq \overline{f}_{\pi,p} \leq \underline{f}_{\pi,p} + \widetilde{\sigma}(f,\pi) \ ,$$

$$\underline{f}_{\pi,\infty} \leq \underline{f}_{\pi',\infty} \leq \overline{f}_{\pi',\infty} \leq \overline{f}_{\pi,\infty} \leq \underline{f}_{\pi,\infty} + \widetilde{\sigma}(f,\pi) .$$

Finally, in this section, we state the following Theorem.

Theorem 3. Let $f \in Q^*$ with best monotone L_p – approximation f_p . Then

$$\lim_{\pi} \overline{f}_{\pi,p} = \lim_{\pi} \underline{f}_{\pi,p} = f_p ,$$

$$\lim_{\pi} \overline{f}_{\pi,\infty} = \lim_{\pi} \underline{f}_{\pi,\infty} = f_{\infty} = \lim_{p \to \infty} f_{p}$$

Proof. See the proofs of Theorems 4 and 5 in [2, pp.18-19].

3. The Case When f Is Continuous

We choose to write the full proof of the following theorem because of the nature of the work involved here.

Theorem 4. Let f be continuous on Ω , then f_p is continuous, 1 .

Proof. Let (x,y) be an interior point of Ω and let it be fixed. Let $\varepsilon > 0$ be given. Then

$$\begin{aligned} |f_{p}(x,y) - f_{p}(x',y')| &\leq |f_{p}(x,y) - \overline{f}_{\pi,p}(x,y)| \\ &+ |\overline{f}_{\pi,p}(x,y) - \overline{f}_{\pi,p}(x',y')| + |\overline{f}_{\pi,p}(x',y') - f_{p}(x',y')| \end{aligned} (3.1)$$

Since Theorem 3.1 implies that

$$f_p(x,y) = \lim_{x \to p} f_{\pi,p}(x,y)$$

for all $(x,y) \in \Omega$, we can choose a partition $\pi = \{B_i\}_{i=1}^n$ with the following

- (1) Each of the first and third term on the right hand side of (3.1) is less than $\epsilon/3$.
- (2) Suppose \overline{f}_{π} is given by

$$\overline{\mathbf{f}}_{\pi} = \sum_{i=1}^{n} \tau_{i} \mathbf{I}_{\mathbf{B}_{i}} .$$
(3.2)

Then by the uniform continuity of f over Ω we can have

$$|\tau_i - \tau_{j-1}| < \epsilon / 9 \tag{3.3}$$

for all i = 2, 3, ..., n

208

Thus, (3.1) becomes

$$\left|f_{p}(\mathbf{x},\mathbf{y})-f_{p}(\mathbf{x}',\mathbf{y}')\right| < \epsilon / 3 + \left|\overline{f}_{\pi,p}(\mathbf{x},\mathbf{y})-\overline{f}_{\pi,p}(\mathbf{x}',\mathbf{y}')\right| + \epsilon / 3$$
(3.4)

for all $(x',y') \in \Omega$. We need to show that there exists a real number $\delta > 0$ such that

$$\left|\overline{\mathbf{f}}_{\pi,p}\left(\mathbf{x},\mathbf{y}\right) - \overline{\mathbf{f}}_{\pi,p}(\mathbf{x}',\mathbf{y}')\right| < \epsilon / 3 \tag{3.5}$$

for all $(x',y') \in N_{\delta}(x,y)$, where $N_{\delta}(x,y)$ is an open disk of radius δ centered at (x,y).

We start by observing first that if f is given by (3.2), then $\overline{f}_{\pi,p}$ must be given by

$$\overline{\mathbf{f}}_{\boldsymbol{\pi},\mathbf{p}} = \sum_{i=1}^{n} \gamma_i \mathbf{I}_{\mathbf{B}_i} . \qquad (3.6)$$

We now have two cases to consider:

Case 1. $(x,y) \in Int (B_j)$ for some $j \le n$. Then it follows that

$$\left|\overline{f}_{\pi,p}(x,y) - \overline{f}_{\pi,p}(x',y')\right| = \left|\gamma_j - \gamma_j\right| = 0$$

for all $(\mathbf{x}', \mathbf{y}') \in \mathbf{B}_{i}$. Let $\delta = \min(\delta_{1}, \delta_{2})$ [see Fig. (3.1)]

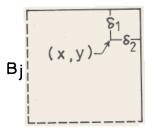


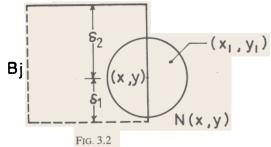
FIG. 3.1

Then (3.4) becomes

$$|\mathbf{f}_{\mathbf{p}}(\mathbf{x},\mathbf{y}) - \mathbf{f}_{\mathbf{p}}(\mathbf{x}',\mathbf{y}')| < 2 \epsilon / 3$$

for all $(x',y') \in N_{\delta}(x,y)$ which implies the continuity of f_p at x in this case.

Case 2. (x,y) lies on the boundary of B_j but it is none of the vertices of B_j for some $j \le n$.



Then it follows from (3.6) that

$$\left|\overline{f}_{\pi,p}(x,y) - \overline{f}_{\pi,p}(x',y')\right| = \left|\gamma_j - \gamma_j\right| = 0$$

for all $(x',y') \in B_j \cap N_{\delta}(x,y)$ where $\delta = \min(\delta_1,\delta_2)$ and δ_1 and δ_2 as shown in Fig. (3.2).

Now, consider $(x',y') \in B_j^c \cap N_{\delta}(x,y)$, and suppose that

$$\mathbf{f}_{\pi,p}(\mathbf{x}',\mathbf{y}') - \overline{\mathbf{f}}_{\pi,p}(\mathbf{x},\mathbf{y}) = \overline{\mathbf{f}}_{\pi,p}(\mathbf{x}',\mathbf{y}') - \overline{\mathbf{f}}_{\pi,p}(\mathbf{x},\mathbf{y}) = \gamma_{j+1} - \gamma_j > \epsilon / 3 .$$

Then, we obtain

$$\epsilon / 3 < \gamma_{j+1} - \gamma_j = (\gamma_{j+1} - \tau_{j+1}) + (\tau_{j+1} - \tau_j) + (\tau_j - \gamma_j)$$

Since $\tau_{j+1} - \tau_j < \epsilon / 9$ by (3.3), we may assume without loss of generality that

$$\gamma_{j+1} - \tau_{i+1} > \epsilon / 9$$

In such a case let

$$\gamma_{j+1}^* = \gamma_{j+1} - \epsilon / 9$$

Hence,

$$\gamma_{j+1}^* - \gamma_j = (\gamma_{j+1} - \gamma_j) - \epsilon / 9 > \epsilon / 3 - \epsilon / 9 = 2 \epsilon / 9 > 0$$

Now, let $\overline{f}^*_{\pi,p}$ be the non-decreasing step function defined on Ω by

$$\overline{f}_{\pi,p}^* = \sum_{\substack{i=1\\i\neq j+1}}^n \gamma_i I_{B_i} + \gamma_{j+1}^* I_{B_{j+1}}$$

Then,

$$\|\overline{f}_{\pi,p}^* - \overline{f}_{\pi}\|_p^p = \sum_{\substack{i=1\\i\neq j+1}}^n |\gamma_i - \tau_i|^p A(B_i)$$

+
$$| \gamma_{j+1}^* - \tau_{j+1} |^p A(B_{j+1})$$
,

while,

$$\|\overline{f}_{\pi,p} - \overline{f}_{\pi}\|_{p}^{p} = \sum_{i=1}^{n} |\gamma_{i} - \tau_{i}|^{p} A(B_{i})$$

But notice that (3.7) and (3.8) imply that

$$\begin{aligned} \gamma_{j+1}^* - \tau_{j+1} &= \gamma_{j+1} - \epsilon / 9 - \tau_{j+1} \\ &= (\gamma_{j+1} - \tau_{j+1}) - \epsilon / 9 > \epsilon / 9 - \epsilon 9 = 0 \end{aligned}$$

or,

$$0 < \gamma_{j+1}^* - \tau_{j+1} < \gamma_{j+1} - \tau_{j+1}$$

or.

$$|\gamma_{j+1}^* - \tau_{j+1}|^p < |\gamma_{j+1} - \tau_{j+1}|^p$$

which implies upon comparing (3.10) and (3.11) that

$$\left\|\overline{\mathbf{f}}_{\pi,p}^* - \overline{\mathbf{f}}_{\pi}\right\|_p < \left\|\overline{\mathbf{f}}_{\pi,p} - \overline{\mathbf{f}}_{\pi}\right\|_p \,.$$

Contradiction! Thus, our assumption is not correct and hence we must have

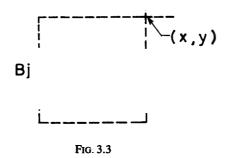
$$\left|f_{\pi,p}(x,y) - f_{\pi,p}(x',y')\right| < \epsilon / 3 ,$$

for all $(x',y') \in B_j^c \cap N_{\delta}(x,y)$. Therefore (3.4) becomes

$$|f_{p}(\mathbf{x},\mathbf{y}) - f_{p}(\mathbf{x}',\mathbf{y}')| < 2 \epsilon / 3 + \epsilon / 3 = \epsilon ,$$

for all $(x',y') \in N_{\delta}(x,y)$.

Case 3. (x,y) is the vertex of a square (Fig. 3.3).



This case can be treated by splitting $N_{\delta}(x,y)$ to four different parts, and then applying the steps of case 2. This completes the proof

Corollary 1. The function $f_{\infty} = \lim_{p \to \infty} f_p$ is continuous on Ω when f is continuous on Ω .

Proof. Since f_{∞} is the uniform limit of continuous functions, it must be continuous.

References

- Darst, R.B. and Huotari, R., Monotone L₁ approximation on the unit n-Cube, Proc. Amer. Math. Soc. 95(3): 425-428 (1985).
- [2] Darst, R.B. and Sahab, S., Approximation of continuous and quasi-continuous functions by monotone functions, J. Approximation Theory 38: 9-27 (1983).
- [3] Landers, D. and Rogge, L., On projections and monotony in L_p- spaces, Ann. Probab. 7: 363-369 (1979).
- [4] Shilov, G.E. and Gurevich, B.L., Integral, Measure and Derivative: a Unified Approach, Prentice-Hall, Englewood Cliffs, N.J. (1976).
- [5] Ubhaya, V.A., Isotone optimization I, J. Approximation Theory 12: 146-159 (1974).
- [6] Ubhaya, V.A., Isotone optimization II, J. Approximation Theory 12: 315-331 (1974).
- [7] Ubhaya, V.A., Almost monotone approximation in L_w, J. Math. Anal. Appl. 49: 659-679 (1975).

أفضــل تقـريبـات L_p للـدوال المتصلة وشبــه المتصلة باستخــدام الـدوال غــير التمناقصية عملى الوحمدة المربعمة

سالم م. سحـــاب قسم الرياضيات ، كلية العلوم ، جامعة الملك عبد العزيز ، جـــدة ، المملكة العربية السعودية

في هذا البحث نعرف شبه الاتصال على الوحدة المربعة ، ونثبت أن تقريبات L_p تتقارب بانتظام إلى إحدى تقريبات L_p . علاوة على ذلك نثبت أن أفضل تقريبات L_p لأي دالة متصلة هي أيضاً دالة متصلة وكذلك تقريب L_∞ الناتج من تقاربات L_p .